Stoich Practice Test

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Which of the following is true about the reaction shown below?
$\mathrm{C}_{5} \mathrm{H}_{12}(\mathrm{l})+8 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 5 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
a. 9 moles of reactants chemically change into 11 moles of product.
b. 9 grams of reactants chemically change into 11 grams of product.
c. 9 liters of reactants chemically change into 11 liters of product.
d. 9 atoms of reactants chemically change into 11 atoms of product.
2. At STP, how many liters of oxygen are required to react completely with 3.6 liters of hydrogen to form water?
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
a. 1.8 L
b. $\quad 3.6 \mathrm{~L}$
c. $\quad 2.0 \mathrm{~L}$
d. 2.4 L
\qquad 3. Which type of stoichiometric calculation does not require the use of the molar mass?
a. mass-mass problems
b. mass-volume problems
c. mass-particle problems
d. volume-volume problems
3. The equation below shows the decomposition of lead nitrate. How many grams of oxygen are produced when $11.5 \mathrm{~g} \mathrm{NO}_{2}$ is formed?
$2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{PbO}(\mathrm{s})+4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$
a. $\quad 1.00 \mathrm{~g}$
b. $\quad 2.00 \mathrm{~g}$
c. 2.88 g
d. 32.0 g
\qquad 5. Mercury can be obtained by reacting mercury(II) sulfide with calcium oxide. How many grams of calcium oxide are needed to produce 36.0 g of Hg ?
$4 \mathrm{HgS}(s)+4 \mathrm{CaO}(s) \rightarrow 4 \mathrm{Hg}(l)+3 \mathrm{CaS}(s)+\mathrm{CaSO}_{4}$
a. $\quad 1.80 \mathrm{~g}$
b. 7.56 g
c. $\quad 10.1 \mathrm{~g}$
d. $\quad 13.4 \mathrm{~g}$
4. When two substances react to form products, the reactant which is used up is called the \qquad -.
a. determining reagent
b. limiting reagent
c. excess reagent
d. catalytic reagent
5. Identify the limiting reagent and the volume of CO_{2} formed when $11 \mathrm{LCS}_{2}$ reacts with $18 \mathrm{~L} \mathrm{O}_{2}$ to produce CO_{2} gas and SO_{2} gas at STP.
$\mathrm{CS}_{2}(g)+3 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{SO}_{2}(g)$
a. $\mathrm{CS}_{2} ; 5.5 \mathrm{~L} \mathrm{CO}_{2}$
b. $\mathrm{O}_{2} ; 6.0 \mathrm{~L} \mathrm{CO}_{2}$
c. $\mathrm{CS}_{2} ; 11 \mathrm{LCO}_{2}$
d. $\mathrm{O}_{2} ; 27 \mathrm{~L} \mathrm{CO}_{2}$
6. Methane and hydrogen sulfide form when hydrogen reacts with carbon disulfide. Identify the excess reagent and calculate how much remains after 36 L of H_{2} reacts with 12 L of CS_{2}.
$4 \mathrm{H}_{2}(g)+\mathrm{CS}_{2}(g) \rightarrow \mathrm{CH}_{4}(g)+2 \mathrm{H}_{2} \mathrm{~S}(g)$
a. $3 \mathrm{LCS}_{2}$
b. $6 \mathrm{LCS}_{2}$
c. $9 \mathrm{LCS}_{2}$
d. $12 \mathrm{~L} \mathrm{H}_{2}$
7. When an equation is used to calculate the amount of product that will form during a reaction, then the value obtained is called the \qquad —.
a. actual yield
b. percent yield
c. theoretical yield
d. minimum yield
8. Lead nitrate can be decomposed by heating. What is the percent yield of the decomposition reaction if 9.9 g $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ are heated to give 5.5 g of PbO ?
$2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}(s) \rightarrow 2 \mathrm{PbO}(s)+4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$
a. 44%
b. 56%
c. 67%
d. 82%
9. In a particular reaction between copper metal and silver nitrate, 12.7 g Cu produced 38.1 g Ag . What is the percent yield of silver in this reaction?
$\mathrm{Cu}+2 \mathrm{AgNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}$
a. 56.7%
b. 77.3%
c. 88.2%
d. 176%
10. Why does a higher concentration make a reaction faster?
a. Higher concentration increases the frequency of collisions.
b. Higher concentration increases the total energy of collisions.
c. Higher concentration decreases the activation energy of the overall reaction.
d. Higher concentration decreases the energy needed for a collision to be effective.
11. Why does a catalyst cause a reaction to proceed faster?
a. A catalyst increases the frequency of collisions.
b. A catalyst increases the total energy of collisions.
c. A catalyst decreases the activation energy of reaction.
d. A catalyst decreases the need for an activated complex.
12. What is the effect of adding more water to the following equilibrium reaction?
$\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}$
a. More $\mathrm{H}_{2} \mathrm{CO}_{3}$ is produced.
b. CO_{2} concentration increases.
c. The equilibrium is pushed in the direction of reactants.
d. There is no effect.

Stoich Practice Test

Answer Section

MULTIPLE CHOICE

1. ANS: A

PTS: 1

DIF: L2

REF: p. $386 \mid$ p. 387
OBJ: 12.1.2 Describe the quantities you can use to interpret a balanced chemical equation.
BLM: application
2. ANS: A PTS: 1 DIF: L2 REF: p. 394|p. 396
OBJ: 12.2.2 Explain the general procedure for solving a stoichiometric problem.
BLM: analysis
3. ANS: D PTS: 1 DIF: L2 REF: p. 396
OBJ: 12.2.2 Explain the general procedure for solving a stoichiometric problem.
BLM: comprehension
4. ANS: B PTS: 1 DIF: L2 REF: p. 392|p. 393
OBJ: 12.2.1 Explain how mole ratios are used in chemical calculations.
BLM: analysis
5. ANS: C PTS: 1 DIF: L2 REF: p. 392|p. 393
OBJ: 12.2.1 Explain how mole ratios are used in chemical calculations.
BLM: analysis
6. ANS: B PTS: 1 DIF: L1 REF: p. 401
OBJ: 12.3.1 Explain how the amount of product in a reaction is affected by an insufficient quantity of any of the reactants. BLM: comprehension
7. ANS: B PTS: 1 DIF: L2 REF: p. 402
OBJ: 12.3.1 Explain how the amount of product in a reaction is affected by an insufficient quantity of any of the reactants. BLM: analysis
8. ANS: A PTS: 1 DIF: L2 REF: p. 401
OBJ: 12.3.1 Explain how the amount of product in a reaction is affected by an insufficient quantity of any of the reactants. BLM: analysis
9. ANS: CTS: 1 DIF: L1 REF: p. 405
OBJ: 12.3.2 Explain what the percent yield of a reaction measures.
BLM: knowledge
10. ANS: D PTS: 1 DIF: L3 REF: p. $406 \mid$ p. 408
OBJ: 12.3.2 Explain what the percent yield of a reaction measures.
BLM: analysis
11. ANS: C PTS: 1 DIF: L3 REF: p. $406 \mid$ p. 408
OBJ: 12.3.2 Explain what the percent yield of a reaction measures.
BLM: analysis
12. ANS: A PTS: 1 DIF: L2 REF: p. 598
OBJ: 18.1.2 Identify four factors that influence the rate of a chemical reaction.
BLM: comprehension
13. ANS: C PTS: 1 DIF: L2 REF: p. 600
OBJ: 18.1.2 Identify four factors that influence the rate of a chemical reaction.
BLM: comprehension
14. ANS: A PTS: 1 DIF: L2 REF: p. 614
OBJ: 18.3.2 Identify the three stresses that can cause a change in the equilibrium position of a chemical system. BLM: application

